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Abstract

Autonomous exploration of subterranean environments remains a major challenge for robotic
systems. In response, this paper contributes a novel graph-based subterranean exploration
path planning method that is attuned to key topological properties of subterranean settings,
such as large-scale tunnel-like networks and complex multi-branched topologies. Designed
both for aerial and legged robots, the proposed method is structured around a bifurcated
local- and global-planner architecture. The local planner utilizes a rapidly-exploring random
graph to reliably and efficiently identify paths that optimize an exploration gain within a
local subspace, while simultaneously avoiding obstacles, respecting applicable traversability
constraints and honoring dynamic limitations of the robots. Reflecting the fact that multi-
branched and tunnel-like networks of underground environments can often lead to dead-ends
and accounting for the robot endurance, the global planning layer works in conjunction
with the local planner to incrementally build a sparse global graph and is engaged when
the system must be re-positioned to a previously identified frontier of the exploration space,
or commanded to return-to-home. The designed planner is detailed with respect to its
computational complexity and compared against state-of-the-art approaches. Emphasizing
field experimentation, the method is evaluated within multiple real-life deployments using
aerial robots and the ANYmal legged system inside both long-wall and room-and-pillar
underground mines in the U.S. and Switzerland, as well as inside an underground bunker.
The presented results further include missions conducted within the DARPA Subterranean
Challenge, a relevant competition on underground exploration.



1 Introduction

The collective progress in robotics has enabled the potential of autonomous robotic exploration and mapping
missions to expand into an ever increasing set of applications in both the civilian and military domains alike.
Aerial and ground robots are currently employed in a multitude of search and rescue (Balta et al., 2017; Tomic
et al., 2012; Michael et al., 2012; Delmerico et al., 2019), industrial inspection (Bircher et al., 2016a; Bircher
et al., 2015; Caprari et al., 2012; Balaguer et al., 2000; Sawada et al., 1991; Gehring et al., 2019; Hutter et al.,
2018; Kolvenbach et al., 2019), surveillance (Grocholsky et al., 2006), and commercial applications (Rao et al.,
2016). Despite the significant progress in both systems and methods, a variety of critical environments remain
particularly challenging for robotic access and resilient autonomy. This especially relates to subterranean
settings, the autonomous exploration of which remains particularly difficult and calls for new contributions.
This fact is reflected by the coordinated efforts of the community organized around the DARPA Subterranean
Challenge. Subterranean worlds present a set of properties that render robotic autonomy, whether ground or
aerial, difficult, including the fact that they are often extremely long and large-scale, particularly narrow and
confined, multi-branched and multi-level, self-similar, sensing-degraded, and communications-deprived. Also,
they often feature rough and dynamic terrain including mud, rubble and stairs. Despite these challenges, the
importance of robotic autonomy underground and its associated benefits across diverse application domains
calls for accelerating the relevant research. Robots for mine rescue, inspection of subterranean metropolitan
infrastructure (e.g., subways and sewers), as well as exploratory and scientific missions inside caves and lava
tubes on both Earth and in space are all exemplary domains.

Figure 1: Instances of autonomous graph-based exploration path planning in subterranean environments
using both legged and aerial robots. The presented results are based on field tests in multiple, diverse and
both active and inactive mines in the U.S. and in Switzerland, as well as an underground bunker.

In this work we investigate potential approaches to address the challenges of autonomous subterranean ex-
ploration with both flying and legged robots as depicted in Figure 1. In particular, this paper emphasizes
the exploration path planning problem in a manner cognizant to the particularities of subterranean settings
and puts further focus on extensive field evaluation in multiple underground mines and bunkers. We propose
a new comprehensive Graph-based exploration path Planner (GBPlanner) that builds on a bifurcated local



and global planning architecture tailored to the underground domain. The local planner operates efficiently
within a bounded volume around the current robot location. It employs a rapidly-exploring random graph
sampling kernel to evaluate robot paths that maximize an information gain related to exploring more un-
mapped volume, while simultaneously ensuring collision-avoidance (for either flying or walking systems) and
respecting applicable traversability constraints (walking robots). The best path is selected such that the in-
formation gain is maximized and is subsequently refined to enhance its “safety” properties. However, within
complex and large scale subterranean settings the local planner may report inability to identify admissible
paths that offer sufficient information gain (e.g., when the robot reaches a dead-end such as a mine head-
ing). In such situations, the global planning step is engaged and ensures, by searching through a global yet
sparse and incrementally built graph, the identification of a path towards a previously perceived edge of the
exploration space (e.g., an unvisited mine branch) and thus efficiently re-positions the robot to continue its
mission. Furthermore, the global planner also continuously updates a return-to-home path which is triggered
when the robot’s remaining endurance approaches its limits. This bifurcated sampling-based scheme was
identified to be capable of ensuring efficient and robust exploration for the large-scale, narrow, long, often
tunnel-like and multi-branched underground environments. It also accounts for possible robot traversability
constraints and providing a notion of directionality which is frequently applicable in subterranean settings.
The proposed exploration path planning solution for subterranean environments was evaluated using both
legged and flying robots tested first in simulation and then within multiple field experiments inside a) both
active and inactive long and narrow “long-wall” gold and iron mines in the U.S. and in Switzerland, b)
“room-and-pillar” coal mines, and c) an underground bunker. The results also include field deployments in
the framework of the DARPA Subterranean Challenge Tunnel Circuit and are accompanied with open-source
code and associated datasets that are openly released to the community. In terms of extending our previous
efforts in (Dang et al., 2019b; Dang et al., 2019a), this work makes the following additional contributions:

• A revised local graph search that maximizes the robot safety through a new path refinement step.

• A novel global planning methodology that refines the global graph to enhance its topologies and
offer improved paths to re-position the robot to frontiers of the exploration space or return-to-home.

• The explicit detection and annotation of frontiers that are then used by the global planning stage
to re-position the robot such that it can continue its exploration efficiently.

• The extension of the planner for legged systems by incorporating traversability analysis.

• Detailed complexity analysis for all the steps of both the local and global planning stages.

At the same time this paper emphasizes comprehensive evaluation with a focus on field experiments. To
best evaluate our contribution and enable research reproducibility, this paper further contributes:

• An extensive set of new experimental studies involving both flying and walking robots in different
types and topologies of underground mines, and a subterranean bunker.

• Comparative studies of the proposed method against approaches of the current state-of-the-art
indicating that GBPlanner outperforms established current methods.

• The open-source release of the contributed method on graph-based exploration path planning (ARL,
2020), as well as an extensive dataset (ARL and RSL, 2019).

Finally, we make an effort to make this publication to be as standalone as possible, thus allowing the
interested reader to fully understand the method, its performance and possible limitations.

The remainder of this paper is structured as follows: Section 2 presents related work, followed by the problem
statement in Section 3. The proposed approach is detailed in Section 4, while evaluation studies are presented
in Sections 5 and 6. Finally, conclusions are drawn in Section 7.



2 Related Work

A rich body of work has focused on the general problem of exploration path planning (Marchant and Ramos,
2014; Jones et al., 2013; Berenson et al., 2012; Stoyanov et al., 2010; Popovic et al., 2016; Papachristos
et al., 2017; Bircher et al., 2016b; Yoder and Scherer, 2016; Connolly, 1985; Yamauchi, 1997; Arora and
Scherer, 2017; Corah and Michael, 2019; Hollinger and Sukhatme, 2014). Early work includes the sampling
of “next–best–views” (Connolly, 1985), and frontiers–based exploration (Yamauchi, 1997). More recent
efforts have proposed receding horizon multi-objective planning (Bircher et al., 2016b; Papachristos et al.,
2019; Dang et al., 2018; Papachristos et al., 2017), multi-robot methods (Delmerico et al., 2017; Andre and
Bettstetter, 2016), and emphasized extensive field work (Yoder and Scherer, 2016; Mascarich et al., 2018).
Existing planning methods, however, are mostly designed to deal with either outdoor areas or relatively small
structured facilities and do not reflect the challenges of the very large-scale, tunnel-like, multi-branching,
narrow, and broadly complex subterranean environments (e.g. mines, cave networks, subway infrastructure).

In response to these facts, a niche community has investigated custom solutions to the problem of subter-
ranean exploration. The works in (Silver et al., 2006; Baker et al., 2004) present methods for topological
exploration of underground environments based on edge exploration and the detection of intersections. It
has been verified on ground platforms with the Groundhog system presenting pioneering levels of exploration
capacity. The works in (Calisi et al., 2005; MacAllister et al., 2013; Rufli et al., 2009; Richter et al., 2016) em-
phasized motion planning in geometrically-constrained environments although not specific to subterranean
domains. The contribution in (Li et al., 2019) relates to underground exploration and proposes a navigation
solution but lacks field testing. The methods in (Mansouri et al., 2019a; Kanellakis et al., 2019; Mansouri
et al., 2019b) outline works on underground aerial robotic exploration via open space attraction, junction
and contours detection. The work in (Jacobson et al., 2020) emphasizes the localization challenges in subter-
ranean settings. From a systems perspective, the works in (Morris et al., 2006; Novák et al., 2015) overview
innovations in ground and submersible subterranean robotics, while the paper in (Tardioli et al., 2019) pro-
vides an overview on the use of ground robots underground. Furthermore, the methods in (Bakambu and
Polotski, 2007; Lösch et al., 2018) outline navigation solutions for robotic rovers underground.

Accelerated by the kick-off of the DARPA Subterranean Challenge, the domain of underground exploration
path planning is currently experiencing rapid growth. Examples of this relate to the works in (Miller et al.,
2020) using legged systems, a dataset on relevant artifact classification (Shivakumar et al., 2019), a method
on combining contact and inertial data for confined and degraded flying robot navigation (Lew et al., 2019),
the contribution in (Lajoie et al., 2019) on robot localization, the lighter-than-air design in (Huang et al.,
2019), as well as our team contributions in (Khattak et al., 2019; Dang et al., 2019b; Papachristos et al.,
2019; Dang et al., 2019a; Bjelonic et al., 2019). Motivated by this challenge, the contribution proposed in
this paper aims to offer a general in nature, but also optimized in design, path planning methodology for
autonomous subterranean exploration. These goals are achieved through a bifurcated approach of efficient
and resourceful local planning strategy which is optimized for volumetric gain, combined with a global
planning layer that is responsible for ensuring autonomous homing and robot re-positioning after the robot
has reached a dead-end (e.g. a mine heading). The method is applicable to diverse robotic configurations
and it is demonstrated through both flying and walking systems.

3 Problem Statement

Exploration path planning in subterranean environments, as considered in this work, is an instance of the
volumetric exploration problem and as such aims to build a complete map of previously unknown space
autonomously. Generally, a subterranean environment is a closed, bounded and connected point set with
possible exceptions being access points from above ground (e.g., mine portals or subway entrances) and
consists of a large in scale complex network of branches, junctions, multiple levels and openings (e.g., rooms
or caves). It may involve a collection of obstacles within it and may present terrain posing severe traversability
constraints. As such, these kinds of environments (e.g., underground mines, tunnels, subway infrastructure,



and cave networks) with their distinct characteristics in length and topology introduce multiple challenges
that must be accounted for in the planner.

First of all, the scale of the environment prohibits planning from taking place in a computationally efficient
manner at the full configuration space of the environment bounds. Nonetheless, the particular geometric
properties common among subterranean settings provide a notable feature that the planner may exploit; it-
eratively exploring local sub-spaces generates large exploration rewards without the penalty of exhaustively
searching through the whole space. At the same time as the robot proceeds by local exploration, distinct
frontiers of the explored space and critical points such as underground mine branching points and junctions
appear. This insight allows us to re-cast the exploration path planning problem into two bifurcated stages,
namely that of the local exploration planner responsible for efficient exploration within a sliding spatial
window around the current robot pose, and that of the global exploration planner which is responsible for
a) relocating the robot towards previously unexplored regions when the local planner reports its inability to
progress, or b) returning to a predefined home location when the remaining endurance is insufficient to con-
tinue. Given this two-layer approach, we define the concepts of “local completion” and “global completion”.

Let M be a 3D occupancy map of the environment which is incrementally built from measurements of an
onboard depth sensor S, as well as robot poses derived from a localization system O. The map consists
of voxels m of three categories, namely m ∈ Mfree, m ∈ Moccupied, or m ∈ Munknown representing free,
occupied, and unknown space respectively, while certain (generally disconnected) subsets of the map may
correspond to “no-go” zones MNG representing possible traversability constraints or other imposed limits.
Furthermore, let dmax be the effective range, and [FH , FV ] be the field-of-view in horizontal and vertical
directions of the depth sensor S. In addition, let the robot’s configuration at time t be defined as the
combination of 3D position and heading ξt = [xt, yt, zt, ψt]. Importantly, since for most range sensors’
perception stops at surfaces, sometimes hollow spaces or narrow pockets cannot be fully explored thus leading
to a residual map M∗,res ⊂ Munknown with volume V∗,res which is infeasible to explore given the robot’s
constraints. As a result, given a volume V∗, the potential volume to be explored is V∗,explored = V∗ \ V∗,res.

Definition 1 (Local Completion) Given a map M, within a local sub-space ML of dimensions DL

centered around the current robot configuration, the planner reports “local completion” if VDL,explored =
VDL

\ VDL,res.

Definition 2 (Global Completion) Given the full occupancy map M of the environment with dimensions
DG and volume VDG

, the planner considers “global completion” if VDG,explored = VDG
\ VDG,res.

In practice, it is not possible and unrealistic to identify Vres, but completion can be approximated by the
lack of a collision-free path inside a planning volume which leads to a space with potentially unknown volume
larger than a threshold Vδ. The local and global planner problems are formulated as follows.

Problem 1 (Local Exploration Planner) Given an occupancy map M and a local subset of it ML cen-
tered around the current robot configuration ξ0, find a collision-free and traversability-aware (when applicable)
path σL = {ξi} to guide the robot towards unmapped areas and maximize an exploration gain defined as the
volume which is expected to be mapped when the robot traverses along the path σL with a sensor S. A path
is admissible if it is collision-free in the sense of not colliding with 3D obstacles in the map and not going
through “no-go” zones that may encode traversability constraints. When “local completion” is reported by
this planner, the global planner is to be engaged.

Problem 2 (Global Exploration Planner) Given the explored and unknown subsets of an occupancy
map M of the environment and the current robot configuration ξ0, find a collision-free path σG leading
the robot towards the frontiers of the unmapped areas. Feasible paths of this planning problem must take
into account the remaining endurance of the robot. When the environment is explored completely (“global
completion”) or the battery limits are approaching, find a collision-free path σH to return the robot to its
home location ξhome.



4 Proposed Approach

Subterranean environments usually consist of long and confined corridors connected by intersections, which
impose major challenges for robotic exploration. More specifically, the exploration algorithm must be scalable
to large environments (e.g., km in length), while responsive enough to facilitate rapid exploration under time
constraints (e.g., limited battery). Tailored to these needs, a bifurcated search strategy is proposed, namely
a) a local exploration planner which focuses on local exploration surrounding the current robot’s pose, and
b) a global planner which performs planning globally inside the currently explored space. In particular, the
local planner searches within a sliding local space of fixed dimension to enable faster computation, while
simultaneously ensuring that the algorithmic complexity remains independent of the environment’s scale.
However, due to the particularities of underground settings in terms of scale, complexity and topology,
the local planner might reach a dead-end or other scenario that prohibits the derivation of an effective
exploration path. The global planner is then queried to relocate the robot towards unexplored areas in order
to continue its mission. The global planner is also utilized to provide a safe and timely return-to-home
path given the robot’s time budget. Both the local and global planner employ and exploit sampling-based
rapidly-exploring random graph algorithms to search for an optimal exploration path, a choice that reflects
noticeable characteristics of underground environments (e.g., mines), which may be topologically modeled
as graphs that are undirected and potentially include cycles. The global graph is built incrementally based
on selective branches from local sub-graphs. Hence, it maintains a very lightweight graph which is fast to
process. The overall flowchart of the exploration solution is presented in Figure 2.

Build
Local
Graph

Get
Shortest

Paths

Evaluate
Exploration

Gain

Extract
Best Exp

Path

Found
Solution?

Perform
Homing

Time
Suf!cient?

Query
Global
Path

Find Shortest
Path To Home

Execute
Exploration

Path

Found
Solution?

Execute
Global
Path

Finish
Exploration

Trigger
Local

Exploration

L L L L

G

G
Y

N

Y

N

N

Y

C

C

C

C

L

G

Local exploration planner

Global exploration planner

Controller

Improve
Best Path

L

Initialization

Figure 2: Architecture of the proposed graph-based exploration planner.

4.1 Local Exploration Planner

The local exploration planner, which is the front-end of the proposed exploration architecture, is designed to
provide a rapid exploratory behavior tailored to the geometries of underground settings by building upon the
rapidly-exploring random graph algorithm. Given the occupancy map M, the current robot’s configuration



ξ0, a local space with dimensions DL centered around the current robot’s position, “no-go” MNG zones
capturing further traversability constraints (when applicable), and a bounding box DR related to the robot’s
physical size, the planner randomly samples a collision-free configuration MR(ξrand) ∈ Mfree inside a local
volume VDL

. From this feasible sample, the planner then finds its closest vertex ξnearest in the graph using
nearest neighbor search (Moore, 1991). If a straight path connecting the two [ξrand, ξnearest] passes the
collision check, the new sample and the straight path are both added to the graph as a new vertex and new
edge respectively. Next, the planner attempts to connect denser collision-free edges from this newly added
vertex to its neighboring vertices within a defined radius δ. This graph building step to create a local graph
GL is continued until it exceeds a set maximum number of vertices NV,max or edges NE,max.

Given the built local graph GL, Dijkstra’s algorithm (Cormen et al., 2009) is utilized to find the set of
shortest paths ΣL from the root vertex ξ0 to all other vertices in the local graph. This step aims to
improve the exploration rate by using only minimum-length paths in the graph and also helps to avoid
nuisance zig-zag motions that are undesirable in narrow spaces, such as underground tunnels. Zig-zag
patterns along a dominant direction have marginal or no benefits in exploration in relatively long and
narrow topologies but reduce the exploration rate due to their additional length. Considering sufficient
sampling density and as zig-zag motions would increase the path length, using Dijkstra tends to eliminate
them. The planner then computes the VolumetricGain for each vertex, which is the expected cumulative
unmapped volume that an onboard range sensor S would perceive given the robot’s configuration at each
vertex. The selection of this information metric is motivated by its ability to give rise to efficient behaviors
at a relatively small computational cost, while information-theoretic alternatives could be considered as valid
alternatives (Charrow et al., 2015; Tabib et al., 2020). The proposed volumetric gain calculation relies on
ray casting, as visualized in Figure 3, and it is a flexible method which can be extended to multiple depth
sensors. For instance, it is straightforward to add another term from an upward depth sensor to map the
ceiling in wider spaces like cave networks. The volumetric gain, together with other weight functions related
to distance and direction, are utilized to compute the ExplorationGain for each shortest path in ΣL. In
particular, given a path σi ∈ ΣL, i = 1...n with a set of vertices along the path νij ∈ σi, j = 1...mi, the
ExplorationGain(σi) is calculated as follows:

ExplorationGain(σi) = e−γSS(σi,σexp)
mi∑
j=1

VolumetricGain(νij)e
−γDD(νi

1,ν
i
j) (1)

where S(σi, σexp), D(νi1, ν
i
j) are weight functions with tunable factors γS , γD > 0. Furthermore, D(νi1, ν

i
j)

is the cumulative Euclidean distance from a vertex νij to the root νi1 along the path σi. This aims to favor
combinations of relatively short trajectories that are associated with high gains in order to achieve a higher
exploration rate.

It is noted that when the robot approaches branching points of the environment, vertices near edges of the
intercepting branch could get very high volumetric gains towards locally occluded regions, which encourages
branch-switching back-and-forth paths across the junction in hope of maximizing the exploration rate. A
similar situation could happen with small occluded areas which often create false expectations of high gains.
Such behavior, however, is often undesirable in practice since it leads to sudden-and-unnecessary change in
exploration direction of the robot. To penalize this behavior in certain cases, a similarity function S(σi, σexp)
is introduced to disfavor paths that greatly diverge from the currently estimated exploration direction. The
similarity metric, in this case, is developed using the Dynamic Time Warping (DTW) method (Bachrach,
2013), which calculates the cumulative Euclidean distance between the planned path σi and a pseudo straight
exploration path σexp with the same length. The direction of σexp is averaged over a temporal window of
the robot’s pose. A path that maximizes the ExplorationGain is then selected and refined before being
conducted by the robot. After each planner run, the whole procedure is iteratively repeated. The whole
process is visualized in Figure 4 and 5, while its pseudo-code is provided in Algorithm 1 and Algorithm 2.
Note that formal inference of local completion requires explicit knowledge of the residual space VDL,res. In
practice, however, this condition is detected when no path with exploration gain above a small threshold
gε > 0 is discovered.



Figure 3: The volumetric gain calculation relies on ray casting. From the current robot pose and given a
certain 3D sensor model (here a 2D representation is presented for simplicity), the algorithm identifies how
many voxels in the unknown space can be traversed by any ray casted within the sensor frustum model.

a) Random Sampling b) Graph Expanding c) Graph Expanding

Current position & exploration direction

Graph edge

Unknown voxelExplored, free voxel Occupied voxel

Graph vertex Invalid samples Invalid edge Radius to add more edgesLimit edge’s length

Figure 4: Illustration of random sampling and local graph building. Sub-figure a) presents some initial
collision-free vertices and edges being added to the graph. Sub-figures b-c) introduce further sampling
iterations to add more vertices and densify the graph with more edges within a radius surrounding each
newly added vertex.

Algorithm 1 Local Planner

1: ξ0 ← GetCurrentConfiguration()
2: GL ← BuildLocalGraph(ξ0)
3: ΣL ← GetDijkstraShortestPaths(GL, ξ0) . From current vertex to others
4: ComputeVolumetricGain(GL) . For all vertices
5: gbest ← 0
6: σL,best ← ∅
7: for all σ ∈ ΣL do
8: gσ ← ExplorationGain(σ) . Compute exploration gain for each path
9: if gσ > gbest then

10: gbest ← gσ; σL,best ← σ . Keep the best path
11: end if
12: end for
13: σL,best ← ImprovePath(σL,best)
14: return σL,best
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Figure 5: Visualization of an instance of the proposed local exploration planning layer. In a) the first step of
the local planner which is building a graph locally based on a random-sampling configuration search method.
Subsequently, in b), Dijkstra’s algorithm is applied to the graph in order to search for shortest paths from
the root to all sampled vertices. In c), the best exploration path is identified utilizing the exploration gain
computed for each shortest path.

Algorithm 2 Build a Local Graph

1: function BuildLocalGraph(ξ0)
2: V← {ξ0}; E← ∅
3: GL = (V,E)
4: DL ← SetLocalBound(ξ0) . 3D bounded space
5: while NV ≤ NV,max and NE ≤ NE,max do
6: ξrand ← SampleFree(DL) . Sample a random vertex inside the 3D bounded space
7: ξnearest ← NearestVertex(GL, ξrand)
8: if CollisionFree(ξrand, ξnearest) then
9: V← V ∪ {ξrand}; E← E ∪ {ξrand, ξnearest} . Expand graph with the newly sampled vertex

10: Ξnear ← NearestVertices(GL, ξrand, δ)
11: for all ξnear ∈ Ξnear do
12: if CollisionFree(ξrand, ξnear) then
13: E← E ∪ {ξrand, ξnear} . Add extra collision-free edges to densify the graph
14: end if
15: end for
16: end if
17: end while
18: return GL = (V,E)
19: end function

4.2 Global Exploration Planner

The global planner performs a search on the currently-explored global space of the environment and provides
two key functionalities that ensure the scalability of exploration autonomy in large underground settings.
First, it searches for an alternate path towards unexplored areas when the local planner reports an inability
to propose any effective exploration path either due to local completion or presence of a passage that is
too narrow to proceed. Second, it is responsible for the critical homing procedure once the remaining



time approaches its allowable budget (e.g., battery lifetime, or user-limited time budget). To tackle these
challenges given the large scale of subterranean environments involving multiple intersections and cyclic
routes, we propose a method to incrementally build and continually maintain a lightweight undirected graph
from the iteratively-derived local exploration graphs.

Specifically, the global planner conducts two steps to augment and expand its graph from every sampled
local graph. In the first step, the global graph adds the best path σL,best by introducing new vertices and
edges along such paths. It also densifies the graph by adding extra collision-free edges from each newly added
vertex to their existing neighbors. This aims to ensure that the global planner can always find a feasible
and short path instead of relying purely on a naive backtracking approach. Subsequently, the global planner
attempts to add additional paths from the list of shortest paths of the local graph which contain vertices
with high volumetric gain. By making use of those unvisited but high-gain vertices, the global graph can
maintain a short but selective list of potential vertices that implicitly encode the locations of “frontiers” and
directions toward unexplored branches of the environment.

To further reduce the number of potential paths from the local graph, the DTW similarity metric is used to
cluster all the high gain paths and only the “principal” paths (the longest ones) from each cluster are added to
the global graph. Leaf vertices from these principal paths are marked as potential “frontiers”. Periodically,
the volumetric gain of each frontier vertex is re-evaluated to maintain a shorter list of preferred frontiers.
Overall, this process enables the critical global frontier re-positioning functionality that facilitates efficient
exploration even inside large-scale and multi-branching topologies. It is triggered occasionally to re-position
the robot when the local planner cannot derive any informative path. To perform this task, the global planner
runs Dijkstra’s algorithm two times in order to a) find the shortest paths from the current location towards
all potential frontiers, and b) find the shortest paths from all frontiers towards the home location. Similarly,
the global planner continuously identifies a return-to-home path based on running Dijkstra’s algorithm on
the global graph. It commands this path when the the time to return to home approaches the remaining
endurance. Subsequently, we provide more detailed analysis with respect to the process of identifying the
best path for future exploration.

Let νG,cur be a vertex in the global graph representing the current robot configuration, and F = {νFG,i} be
a set of updated potential frontiers in the global graph. The problem of selecting a path to maximize the
anticipated exploration gain and re-position the robot towards frontiers of the unexplored space in this case
is particularly complex. This is mainly due to the fact that this decision takes place over an increasingly
larger search space (as the robot proceeds in its exploration). Furthermore, potential unexplored branches
are identified based on incomplete volumetric information gathered from the limited field-of-view of the
sensor. For instance, when the robot is inside an underground mine and has passed several intersections
then multiple unvisited branches from those intersections could become “frontiers”, and predicting which
candidate will be proven best is difficult. Thus, the global planner proposed in this work is developed based
on two basic principles. First, it takes into account the time budget when considering any feasible path,
which in turn allows the robot to be able to visit a frontier initially and then at least have sufficient endurance
to carry out the homing procedure (worst-case scenario). Secondly, the planner should favor high gain areas
requiring a short time to arrive. The exploration gain for the global planer is presented in Equation 2.

GlobalExplorationGainG(νFG,i) = T (νG,cur, ν
F
G,i)VolumetricGain(νFG,i)e

−εDD(νG,cur,ν
F
G,i) (2)

where T (νG,cur, ν
F
G,i) is the estimated remaining exploration time if the planner is to choose the frontier νFG,i.

This parameter is approximately calculated using the Remaining Endurance Time (RET) of the robot and
then subtracting the Estimated Time of Arrival (ETA) to traverse from the current vertex to the designated
vertex and from there to the home location (Equation 3). The above takes the form

T (νG,cur, ν
F
G,i) = RET−ETA(νG,cur, ν

F
G,i)−ETA(νFG,i, νG,home) (3)

where D(νG,cur, ν
F
G,i) is the shortest path length from the current location to the frontier, while the tunable
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Figure 6: A visualized instance of the proposed global exploration planning layer. Sub-figure b) shows two
instances of local graphs at position (1) and (2) and their corresponding principal paths to be added to the
global graph. The global planner first adds these paths directly to its graph. The leaf vertices of these paths
are marked as potential frontiers and more collision-free vertices are added around them to densify the global
graph. Sub-figure a) depicts a case in which the robot keeps exploring using the local planner until reaching
a dead-end at the location (3). The global planner is then triggered, and three possible paths are presented
in the figure as red, green, and blue dashed lines, respectively. Depending on the remaining endurance and
the volumetric gain of each path, the global planner selects the best path using the exploration gain in
Equation 2. The homing–green path is for the worst-case scenario when little battery life remains, while the
red path towards frontier F2 is the best case, and the blue path towards frontier F1 is in between.

parameter εD is used to penalize long paths. Conceptually, this can be considered as the “tentative volumetric
gain” that the robot could acquire for the time duration T () if choosing this frontier to explore. The algorithm
is further visualized in the Figure 6, while its pseudo code is provided in Algorithm 3 and Algorithm 4.

Algorithm 3 Global Planner

1: ν0 ← GetCurrentVertex()
2: ΣG0 ← GetDijkstraShortestPaths(GG, ν0) . Shortest paths from current vertex to others
3: ΣGH ← GetDijkstraShortestPaths(GG, νhome) . Shortest paths from home vertex to others
4: ΣFrontier ← GetPotentialFrontier(F) . List of potential frontiers maintained in the global graph
5: gbest ← 0
6: σG,best ← ∅
7: for all σ ∈ ΣFrontier do
8: gσ ← GlobalExplorationGainG(σ) . Compute gain for each path leading to a potential frontier
9: if gσ > gbest then

10: gbest ← gσ; σG,best ← σ . Keep the best one
11: end if
12: end for
13: σG,best ← ImprovePath(σG,best)
14: return σG,best



Algorithm 4 Build a Global Graph by Adding Paths from Local Graph

1: function BuildGlobalGraph(GG,GL, ξ0)
2: σL,best ← GetBestPath(GL) . Calculated in Algorithm 1
3: AddPathToGraph(GG, σL,best)
4: ΣL ← GetDijkstraShortestPaths(GL, ξ0) . Calculated in Algorithm 1
5: Σprincipal ← DoClustering(ΣL) . Do path clustering and get principal paths from the clusters
6: for all σ ∈ Σprincipal do
7: AddPathToGraph(GG, σ) . Add each principal path to the global graph
8: end for
9: return GG

10: end function

4.3 Traversability-aware Planning

The proposed exploration pipeline is versatile and can be used for both aerial and legged platforms. However,
for the legged robot, the sampling space is constrained to the xy plane relative to the current height of the
robot to reflect the fact that it traverses locally on 2.5D and that an appropriate locomotion controller is
responsible for the full-body system control. Furthermore, due to inevitable uncertainties from the mapping
framework, the occupancy map (Hornung et al., 2013; Oleynikova et al., 2017) is used primarily for collision
checking of the robot’s body, while an elevation map (Fankhauser et al., 2018; Fankhauser et al., 2014) is
employed to create a 2.5D representation of the terrain close to the robot, that then can be used to perform
traversability analysis on a much finer resolution when it comes to its legs.

First of all, depth information from a front-facing depth camera is converted into an elevation map, which
is a probabilistic terrain estimation as a grid-based map including upper and lower confidence bound. The
obtained map is limited around the robot and reflects the pose uncertainty that is aggregated through the
motion of the robot (robot-centric mapping). This map is then used to perform traversability analysis.
To perform this task, the work in (Wermelinger et al., 2016) is employed. The method utilizes filters
to extract terrain characteristics such as slope, roughness, and steps. These features are then combined
through weighted summation to derive a traversability metric, while both a total and individual thresholds
for each feature are applied allowing to classify the paths as traversable or untraversable for the legged
robot and its footprint. Naturally, this requires an augmentation in the algorithmic design of the proposed
planner as opposed to merely performing collision-checking. In principle, the traversability analysis can
address which paths are admissible by the robot but the derived traversability map can only cover areas in
much closer proximity as compared to that of the occupancy map. This is because the traversability map
requires dense measurements (a 2cm grid size is used for the presented experiments) to ensure reliable checks
for all four legs of the robot. However, planning only within short distances around the robot is bound
to lead to relatively inefficient exploration behaviors. To overcome this issue but still honor traversability
constraints, an engineering technique is employed according to which the areas outside the elevation map
are presumably traversable thus allowing to plan longer high-gain paths. An additional traversability test is
recursively invoked to verify in an online manner every waypoint along the trajectory, based on the direction
and magnitude of the robot’s velocity. If the robot approaches an untraversable region, the planner is
re-triggered to provide an alternate path. For representation and implementation efficiency, the proposed
planner interfaces the traversability analysis and represents non-traversable regions as “no-go” zones.

4.4 Path Improvement

Given the best exploration path from the planner σbest, local or global, a refinement step is considered to
adjust the path to further improve the safety of the robot. Primarily this step aims to modify all vertices
along the path to be farther away from obstacles. Such a modification is allowed under an assumption that
the associated change in the exploration gain is usually negligible. This assumption has been verified both
in simulation and in practice and strongly holds especially due to the tunnel-like topologies of underground



environments. The observed difference in gain is not larger than inevitable errors introduced due to noise in
the volumetric gain calculation process. The refinement process is detailed below and visualized in Figure 7.

First, the path is iteratively pruned to remove short edges (e.g., < 0.5m) created due to the random sampling
process. Each vertex is then adjusted within its feasible polygons using a method motivated from previous
work (Liu et al., 2017; Deits and Tedrake, 2015). More specifically, for each edge [νi, νi+1] ∈ σbest, a set of
hyperplanes is estimated by gradually inflating an ellipsoid centering along that edge; vertex νi+1 is then
moved to the center of a polygon formed by computed hyperplanes and a plane perpendicular to the edge
at that vertex. The modification is only permitted if the adjusted path is still collision-free. This step is
repeatedly performed for all vertices of the path. As a result, the modified path is similar but safer than the
given path because all its vertices are pushed away from their surrounding obstacles.
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Figure 7: An approach to improve the robot’s safety by adjusting the path farther from its intermediate
obstacles. There are three iterations needed to adjust all three segments represented in sub-figures a-c.

4.5 Complexity Analysis

To allow a further understanding of the computational complexity of the proposed approach, a detailed
analysis of each method of the planner is presented. Overall, most of the complexity terms of GBPlanner
can be attributed to two operations, namely a) the process of collision checking while building the graph, and
b) voxel status query during volumetric gain calculations. Both these processes require an adequate mapping
framework whose selection is thus critical. Therefore, during the development phase of the planner, two state-
of-the-art mapping frameworks were actively utilized and evaluated, namely Octomap (Hornung et al., 2013)
and Voxblox (Oleynikova et al., 2017). Octomap is widely adopted by the robotics community, while Voxblox
provides particularly fast query of voxel status due to its underlying hashing data structure (Oleynikova et al.,
2017). This in turn is critical to reduce the overall computational load. GBPlanner is developed to interface
with either Octomap or Voxblox depending on user choices.

More specifically, from an algorithmic standpoint, Octomap makes use of an octree data structure for memory
efficiency which in turn leads to O(log(n)) cost to check the status of a voxel, where n is the number of nodes
in the octree. Hence, given the volume VDG

of the map with voxel resolution r, the status checking for each
voxel will take OM,Octomap = O(log(VDG

/r3)) which is increasingly expensive as the map gets larger. On the
other hand, Voxblox incrementally and dynamically builds Euclidean Signed Distance Fields (ESDFs) out of
Truncated Signed Distance Fields (TSDFs) with voxel hashing, which costs constant time OM,Voxblox = O(1)



Table 1: Complexity Analysis of the Local Planner
Functions Complexity
SampleFree O(VDL

/VDL,free × VDR
/r3 ×OM)

CollisionFree O(VDR
/r3 × davg/r ×OM)

AddConnections O(NnearVDR
/r3 × davg/r ×OM)

BuildLocalGraph
O(NVVDL

/VDL,free × VDR
/r3 ×OM +NVNnearVDR

/r3 × davg/r ×OM)
Dijkstra O(NV log(NV))
VolumetricGain O(NVFHFV dmax/(rHrV r)×OM)
ExtractBestPath O(NV)
ImprovePath O(NE,σbest

× VDS ,avg/r
3 ×OM)

to lookup a voxel in the map. Within the experiments presented in Section 6 the planner employed either
Octomap or Voxblox. For the rest of this analysis let us simplify and denote OM as the complexity of voxel
status checking depending on the underlying mapping framework.

Regarding the local planner, the function BuildLocalGraph is examined first. Let DL denote the dimen-
sions of the local planning volume. Using a uniform sampling kernel the probability to get a feasible sample is
ρ = VDL,free/VDL

, where VDL,free is the volume of free space inside the total volume of the local space VDL
.

Moreover, collision checking for the whole robot’s body, modeled as a cuboid with volume VDR
, costs VDR

/r3.
Thus, the overall complexity of the function SampleFree is O(VDL

/VDL,free×VDR
/r3×OM). Similarly, the

complexity terms for the functions CollisionFree and AddConnections are listed in Table 1, where davg
is the average length of edges in the graph, and Nnear is the average number of neighboring vertices in the
graph requiring collision checks to form extra edges. In addition, we utilize the kd-tree (Moore, 1991) data
structure with k = 3 in order to perform 3D position-based neighbor search. Therefore, the complexity of
the function NearestVertex is O(log(NV)), and the complexity for function NearestVertices is bounded

as O(N
1−1/k
V +Nnear) using range search inside the kd-tree. Furthermore, as the local random graph in this

work is typically rather sparse, the adjacency list is utilized as its underlying data structure which in turn
costs O(1) and O(log(NE/NV)) for adding a vertex and an edge respectively. The computational cost for the
volumetric gain calculation for each vertex is also depicted in Table 1, where rH × rV is the resolution of the
range sensor. Lastly, for the ImprovePath function let NV,σbest

and NE,σbest
denote the number of vertices

and edges along the best exploration path respectively. Let VDS ,avg be the average safety local volume en-
closing an edge, then the cost to extract all obstacles inside this volume is O(VDS ,avg/r

3 ×OM). Converting
the local occupied voxels into hyperplanes takes O(NE,σbest

× nmax) (nmax being the maximum number of
iterations) which is negligible (in practice nmax < 50). Then, the complexity term of ImprovePath takes
the form O(NE,σbest

× VDS ,avg/r
3 ×OM).

For the global planner, since it makes use of results from the already-built local graph and utilizes analogous
functions, the complexity overall is similar to that of Algorithm 2 and is shown in Table 2. The function
AddPathToGraph will add collision-free paths, extracted from the local graph, directly to the global
graph, then performs collision checking at every newly added vertex to form extra edges and thus make the
global graph denser. Its complexity is shown in Table 2, where Nnew is the total number of newly added
vertices. Furthermore, the method DoClustering scans through all the branches utilizing the DTW metric
to group them into clusters which costs only O(Nbranch), where Nbranch is the number of Dijkstra shortest
paths. Longest paths in each cluster are considered as principal paths and then added to the global graph.

5 Simulation Studies

A set of simulation studies were conducted to not only allow to tune and verify the performance of the
proposed path planning approach prior to real-life field deployment but also to enable comparison against



Table 2: Complexity Analysis of the Global Planner
Functions Complexity
AddToGraph O(Nnew ×Nnear × VDR

/r3 × davg/r ×OM)
Dijkstra O(NV log(NV))
DoClustering O(Nbranch)
BuildGlobalGraph
O(Nnew ×Nnear × VDR

/r3 × davg/r ×OM) +O(NV log(NV)) +O(Nbranch)
VolumetricGain O(NFrontierFHFV dmax/(rHrV r)×OM)
ExtractBestPath O(NV)
ImprovePath O(NE,σbest

× VDS ,avg/r
3 ×OM)

other state-of-the-art methods in exploration path planning. More specifically, two simulated environment
configurations were utilized - the first representing an underground room-and-pillar mine and the second an
underground long-wall mine. The room-and-pillar mine environment is multiple km-long and presents an
array of multi-way intersections that challenge the planner’s behavior. The latter involves multiple long and
narrow corridors, alongside intersections and cycles. In all simulated tests the performance of GBPlanner
is presented, alongside comparison against the receding horizon Next-Best-View Planner (NBVP) (Bircher
et al., 2016b) and the Frontiers exploration algorithm (FrontierPlanner) (Yamauchi, 1997) implemented for
3D environments and combined with an optimal sampling-based motion planner for collision-free navigation
to the frontiers (S. Karaman and E. Frazzoli, 2011; Karaman and Frazzoli, 2009).

The room-and-pillar simulated environment consists of two sections, left and right, with the first being
relatively more spacious regarding the width of its corridors and the second rather more constrained. Hence,
for a fair comparison between three planners, two exploration scenarios are employed corresponding to the
left and the right sections of the mine. A quadrotor model, similar to the real robotic system described
in section 6.1.1, is developed in ROS-Gazebo utilizing the RotorS simulator (Furrer et al., 2016). Each
planner is run 15 times independently starting from the same location and executed for 15 minutes per
simulated mission. In addition, the average flying speed for exploration in this case is set to be 2m/s.
Relevant simulation results presenting the performance of a) GBPlanner, b) NBVP, and c) FrontierPlanner
against the left and right subsets of this environment are shown in Figures 8 and 9 respectively. Furthermore,
statistical comparison data with respect to the exploration rate of each method are depicted in Figure 10. As
it can be seen, GBPlanner outperforms the other approaches. More specifically, NBVP manages to provide
reasonable solutions but is challenged by the narrow geometry of the environment, while the Frontier-based
planner fails to provide comparable results. The enhanced performance of GBPlanner is largely attributed
to the value of the bifurcated local-global planning architecture with the local mode allowing dense sampling
around the robot and thus efficient exploration despite the imposed geometric constraints, alongside with
efficient re-positioning to the frontiers calculated at the global scale. On the contrary, NBVP for example
performs planning in the whole explored space which enforces a rather more sparse configuration due to
the fact that otherwise the computational cost will increase rapidly as detailed in (Bircher et al., 2016b).
It is noted that to make this comparison fair, both GBPlanner and NBVP are tuned to present similar
computational cost per iteration which in turn necessitated similar amount of vertices to be sampled for
each planner iteration. Voxblox is used as the volumetric mapping framework in these results. Furthermore,
it is also mentioned that FrontierPlanner provides the reference exploration point and a collision-free path
is then derived using the motion planning algorithm in (S. Karaman and E. Frazzoli, 2011).

During the second simulation study, the model of the ANYmal legged platform was tested inside a subset of
a long-wall underground mine environment involving long corridors, branches, and cycles. The GBPlanner
operated in this environment by mostly engaging the local planning stage guiding the robot through the long
and narrow parts of the environment. Furthermore, it occasionally queried the global planner after reaching
a dead-end to reposition the robot to another unexplored area quickly. A comparative study against NBVP
and the FrontierPlanner is also conducted. In particular, each planning algorithm is simulated 15 times
starting from the same location and provided a time budget of 1h, while the walking speed of ANYmal is



Figure 8: Indicative results for the autonomous exploration in the left section of the simulated room-and-
pillar mine. Overall, all three planners achieve good exploration performance in this environment largely
thanks to its spacious corridors, as well as the existence of multiple nearby solutions at any location inside the
environment. As shown in sub-figure a), the mission with GBPlanner was almost complete, while solutions
from NBVP in sub-figure b) tend to stay in spacious corridors since its samples are spanned over the
whole map. Furthermore, paths derived from the NBVP often present zig-zag shape which is undesirable in
practice. The FrontierPlanner achieves adequate performance in this case but with a lower rate as compared
to GBPlanner and NBVP. This is primarily because FrontierPlanner lacks a set of specific optimizations
that GBPlanner performs, including the volumetric gain formulation and the directionality bias.

set to 0.3m/s. An indicative set of exploration results is shown in Figure 11, associated with the statistical
analysis in Figure 12. As shown in Figure 12, GBPlanner continues to surpass the others primarily due to its
bifurcated approach. In addition, while the FrontierPlanner provides encouraging results due to the geometric
simplicity of this environment (spacious, essentially 2D) , NBVP mostly fails to obtain a comparable result.

These simulation studies and the presented comparative analysis of GBPlanner, which is open-sourced (ARL,
2020), against methods of the current state-of-the-art served to verify the overall performance of the method,
understand and evaluate key design choices, such as the role of the global and local planning modes, and
allow to tune the method prior to real-life use. The next section presents an extensive set of field experiments
in diverse subterranean settings that allow to further evaluate the planner performance and its applicability
to both flying and legged robotic systems. The presented field experiments further include a set of challenges
not present in the simulation studies, including true 3D worlds (with changes in inclination/declination),
traversability constraints, tight endurance limitations, necessity to perform auto-homing, importance of
having safety-improved paths, noisy sensor readings and more. Neither NBVP nor the FrontierPlanner
present specific functionalities relevant to these challenges - at least in their current implementations.

6 Experimental Evaluation

The proposed approach on subterranean exploration path planning was rigorously evaluated through a set of
field experiments conducted in different and diverse underground environments across different geographical
regions and based on multiple flying and walking robotic platforms. In terms of environments this included
two long-wall underground mines in the U.S. (located in Nevada and Colorado), one abandoned long-wall



Figure 9: Indicative results for the autonomous exploration in the right section of the simulated room-and-
pillar mine. GBPlanner performs best in this scenario, while the FrontierPlanner shows slower exploration
and the NBVP gets trapped inside the first part of the mine. Due to the inefficient sampling approach
over the full boundaries of the environment, a random tree from NBVP is generally biased towards spacious
areas, which leads to its inability to find feasible paths through narrow passages. As shown in b), the robot
commanded by NBVP keeps flying back and forth inside the first corridor and cannot proceed further due
to a very tight passage after the first turn (1.8m in width). GBPlanner does not suffer from this issue
thanks to its local sampling policy. For FrontierPlanner, it depends on the relative position of the selected
frontier to the current robot position. In general, it could take significant effort to derive a motion planning
solution for the FrontierPlanner if the frontier is far away from the robot position. Furthermore, as shown
in c), inaccessible frontiers from narrow areas could degrade the performance of the FrontierPlanner quickly
since the planner needs to spend more planning iterations to identify such cases and then re-plan to another
frontier. It is noted that with respect to the limitation presented by NBVP, a major increase in the sampling
density could possibly resolve it but at a very significant computational cost.

underground mine in Switzerland, two room-and-pillar underground mines in the U.S. (both in Pittsburgh),
and one underground bunker in Switzerland. Each experiment enabled to evaluate different aspects of the
path planning functionality as summarized in Table 3. The TRJV mine in Northern Nevada is an active gold
mine presenting a modern and very large-scale environment with long corridors and multiple branches. On
the other hand, the Gonzen mine in Switzerland is an old abandoned iron mine consisting of narrow drifts
(< 3m) with rail-tracks on the ground. Moreover, the Wampum underground facility in Pittsburgh represents
an interesting underground mine structure called “room-and-pillar” with wide corridors and intersections
(> 5m) distributed as a chessboard pattern. Apart from those test sites, the proposed planner was also
utilized during two DARPA Subterranean Challenge events that took place in Colorado and Pittsburgh
respectively. The Edgar Mine in Colorado incorporates passages with different sizes varying from 1.4m to a
few meters. The NIOSH mine in Pittsburgh is also an experimental site comprising of long drifts at its portals
leading to room-and-pillar structure further down inside the mine. The Edgar mine was utilized during the
STIX event for team integration testing purposes, while the NIOSH mine was used for the first competition
of the SubT Challenge. Finally, the Menznau underground bunker represents a more structured underground
facility that was used in preparation for the Urban Circuit of the DARPA Subterranean Challenge.

6.1 Aerial and Legged Robots used in this Study

With respect to robotic platforms, two aerial robots (“Alpha” and “Charlie”) (Dang et al., 2019b; Khattak
et al., 2020b) were utilized, alongside the ANYmal quadrupedal legged platform (Hutter et al., 2016).



Figure 10: Exploration progress from the three considered planners (GBPlanner, NBVP, and FrontierPlan-
ner) in a simulated room-and-pillar mine with two scenarios that took place in the left and the right section
of the environment using an aerial robot model (M100). The left and the right sub-figures show the changes
in the explored volume during 15 independent runs inside the left and the right section of the mine respec-
tively. The solid lines present the average over the whole 15 runs associated with shaded areas which are the
lower and upper bound from those runs. Overall, GBPlanner outperforms the other two methods and works
reliably in both cases. NBVP is incapable of providing planning solutions for exploring narrow spaces due
to its fixed–global sampling space setting, thus leading to an insufficient number of samples to find feasible
paths through narrow corridors within reasonable computational bounds. Furthermore, the FrontierPlanner
achieves slower exploration rate and is sensitive to inaccessible frontiers that arise in tight spaces.

Figure 11: Indicative results for autonomous exploration inside a simulated long-wall mine. The GBPlanner
achieves the best result thanks to its bifurcated approach utilizing both local planner for rapid exploration
and global planner for fast relocation. The FrontierPlanner shows a comparable result with a slightly lower
exploration rate, while the NBVP demonstrates very slow exploration progress primarily due to its branch
switching behavior when approaching intersections.

6.1.1 Subterranean Aerial Robotic Scouts

The utilized aerial robotic scouts called “Alpha” and “Charlie” are both based around a DJI Matrice M100
and integrate a multi-modal sensor fusion solution combining LiDAR (Velodyne PuckLITE or Ouster OS-
1), visual (FLIR Blackfly) and inertial (VectorNav VN-100) estimation, while Charlie further integrates a
thermal camera (FLIR Tau2 LWIR) but the platforms are otherwise identical. Both flying systems rely
on Model Predictive Control (MPC) for their automated operation and GBPlanner subscribes to the data



Figure 12: Exploration progress from three planners (GBPlanner, NBVP, and FrontierPlanner) in a simulated
long-wall mine with the ANYmal platform. The solid lines present the average explored volume over 15
missions, enclosing by a lower and upper bound in shaded areas. In this simulated environment, both
GBPlanner and FrontierPlanner almost completed the full exploration for the whole environment thanks to
its geometric simplicity, yet the GBPlanner still demonstrates enhanced performance. The NBVP shows the
lowest exploration rate since it continually switches between branches when traversing near intersections.

provided by the localization and mapping system (Khattak et al., 2020a) and provides references to the
onboard controller. All the processing takes place onboard and in real-time based on an Intel NUC-i7
(NUC7i7BNH) computer that further interfaces the attitude and thrust control unit from DJI. Both LiDAR
sensors integrated, the Velodyne PuckLITE on the Alpha robot and the Ouster OS-1 on the Charlie robot,
provide a horizontal and vertical field of view of FH = 360◦, FV = 30◦ respectively. They both have a
maximum range of 100m, while a map update takes place for the first 50m of ranging. Based on the robot
size and safety considerations, the bounding box DR for all flying robot tests was set to length×width×height
= 1.4× 1.4× 0.5m. A system overview is illustrated in Figure 13.

6.1.2 ANYmal Legged Robot

ANYmal is a quadrupedal robot designed for autonomous operation in challenging environments (Bellicoso
et al., 2018). The legs of this versatile machine are driven by twelve equal series elastic actuator units

Test Site Location Robotic Platforms Date Planner Modes
TRJV Mine NV, U.S. Charlie Aerial Robot 1/2019 Local & Global & Homing
Gonzen Mine Sargans, CH ANYmal 10/2019 Local & Global & Homing
Wampum Underground PA, U.S. Alpha Aerial Robot 8/2019 Local & Homing
Edgar Mine CO, U.S. ANYmal 4/2019 Local & Homing
NIOSH Mine PA, U.S. Alpha Aerial Robot 8/2019 Local & Homing
Menznau Bunker Menznau, CH ANYmal & Alpha 12/2019 Local & Homing

Table 3: Field testing environments considered in this study. Our experiments took place inside mines of
different geologies and configurations, namely active gold long-wall mines (TRJV), two previously abandoned
and now research mines one of which one long-wall (Edgar) and the other a room-and-pillar coal mine
(NIOSH), an old and particularly large room-and-pillar coal mine (Wampum), and an abandoned long-wall
iron mine (Gonzen). Furthermore, an additional test in an underground bunker (Menznau) was conducted.



Figure 13: System overview of our aerial subterranean robotic scout “Alpha”. The “Charlie” robot is similar
with the difference of utilizing an Ouster OS-1 LiDAR as opposed to the Velodyne PuckLITE and further
integrating a FLIR Tau2 LWIR thermal camera.

mounted at the joints designed to achieve a large range of motion, allowing to overcome obstacles and stairs.
In addition, the robot is water and dust resistant and thanks to its rollover bar, Kevlar belly plate, and
shock absorbers it is also resilient to falls. ANYmal can carry a variety of sensors as payload, based on the
scenario where it is deployed. During the experiments presented in this work, the robot features a LiDAR
(Velodyne PuckLITE) sensor, a depth camera (Intel RealSense D435), and an inertial measurement unit.
Leg kinematics and inertial measurements are fused together to generate a so-called “leg odometry” by the
onboard state estimator (Bloesch et al., 2013). The robot encloses in its main body three high performance
computers (each featuring Intel i7 CPU) and one graphics processing unit (Jetson Xavier). Each on-board
computer is responsible for one key aspect of the mission: locomotion, navigation, and mission execution.
All the processing takes place onboard and in real-time. Lidar pointclouds, depth camera output, and
leg odometry are then used by a multi-modal sensor fusion algorithm to provide a unified mapping and
localization solution to the planner and a path follower module. Similar to the aerial robot scouts, the used
Velodyne PuckLITE provides a horizontal and vertical field of view of FH = 360◦, FV = 30◦. Based on the
robot size and safety considerations, the bounding box DR for ANYmal was set to length×width×height =
1.2× 0.85× 0.7m. A system overview is illustrated in Figure 14.

6.2 Aerial Robotic Exploration of a Long-Wall Underground Mine

The first presented experiment relates to the autonomous exploration of a working level of the active TRJV
underground long-wall gold mine in Northern Nevada. In this experiment, we present a first comprehensive
evaluation of all the GBPlanner functionalities (for flying robots) with the goal to allow a clear understanding
of its overall functionality. As presented in Figure 15 the autonomous exploration of this underground mine
required that the GBPlanner utilizes all its modes of operation, namely local, global and auto-homing. The
system starts from the robot take-off position and as all the space around it is initially unknown it engages
the local planner. Since the environment is a long-wall mine this naturally leads to the robot following a
certain branch for a significant distance up to the point of reaching an exploration “dead-end” (in this case a
machine-shop inside the underground mine). As the algorithm not only explores locally but simultaneously
builds a sparse global graph on which it identifies the frontier vertices with the highest expected exploration
gain, the method was able to command an optimized and collision-free re-positioning path towards the



Figure 14: System overview of our ANYmal legged subterranean robot.

best exploration frontier. When the robot reached the frontier, the local mode was re-engaged and enabled
efficient exploration in this region until it was identified that the system must perform auto-homing due to
the limits of its battery life.

6.3 Walking Robot Exploration of an Underground Long-Wall Mine

An analogous case study was conducted using the ANYmal robot in order to evaluate the GBPlanner
performance in such long-wall underground mines using legged systems. The specific test took place in
Sargans, Switzerland at the Gonzen abandoned iron mine and the results are shown in Figure 16. A first
difference with the previous test relates to the use of a legged system with the planner now further accounting
for traversability constraints. In this test the robot initiates its mission and the local planner is engaged.
As the system has to respect traversability constraints but the traversability map is only short-range the
resolving architecture to continuously re-evaluate traversability and if needed command a short back-track
motion to re-plan is demonstrated. Furthermore, similar to the previous experiment with a flying robot,
GBPlanner continuously builds its local graph on which frontiers are also calculated. Thus, when ANYmal
reached a local dead-end then a re-positioning, optimized and collision-free, path to the identified frontier
is commanded. Notably, when the robot is re-positioned to the frontier, a fall-back homing path is also
derived. In fact a re-positioning path is only commanded if the endurance is sufficient to also allow homing.
Once the robot reached the commanded frontier, it continues its traversability-aware local exploration up to
a point that a return-to-home path is commanded.

6.4 Aerial Robotic Exploration of an Underground Room-and-Pillar Mine

Underground environments and particularly mines present a variety of geometric configurations presenting
different challenges for robots deployed to explore them autonomously. Beyond long-wall underground mines,
another common configuration is the “room-and-pillar”. Room-and-pillar is a mining system in which the
mined material is extracted across a horizontal plane, creating horizontal arrays of rooms and pillars. To
evaluate the GBPlanner functionality in such a scenario, a test was conducted in the Wampum Underground
facility which contains an abandoned and re-purposed underground coal mine with room-and-pillar structure.
During this test the Alpha aerial robotic scout was tested and as shown in Figure 17 managed to explore
multiple pillars of the environment despite its large-size (in cases, an intersection was more than 12m-wide).
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Figure 15: Autonomous exploration inside TRJV underground gold mine in Northern Nevada. This experi-
ment demonstrates both the local and global planning functionalities of the proposed method. Initially the
robot explores with the local mode engaged, while simultaneously building a global graph on which it calcu-
lates the gain of frontier vertices. When the local planner presents inability to explore further efficiently (due
to a dead-end), then global planner is engaged and the frontier with maximum expectation for subsequent
fruitful exploration is selected and an optimized collision-free path to its position is derived. When the robot
reaches the frontier, then the local exploration mode is re-engaged and the process continues to map more
of the unknown space. Eventually, the system identifies that its battery approaches its limit and timely
calculates and commands a return-to-home (auto-homing) path. The approximate exploration path in this
experiment was 230m long. A video of this mission can be found at https://youtu.be/SNMsKAnCQkw.

During this test the local planner is continuously engaged up to the point that the robot’s battery life drops
to a level that a return-to-home path must be commanded for the system to safely come back. Among
others, this test contributed into evaluating the ability of GBPlanner to negotiate multi-way intersections.

6.5 Deployment in the DARPA Subterranean Challenge

The proposed exploration path planning framework was further tested within the framework of the DARPA
Subterranean Challenge “Tunnel Circuit” - the first leg of this DARPA competition relating to the exploration
of underground mines - as well as the preparatory “STIX” integration event. During these tests there was
only a single human-operator who was responsible to command several robots, legged and flying, to enter the
underground mine and then explore on their own. We present two field results, namely a) the exploration of
the first segment of the “NIOSH underground mine” in Pittsburgh during the “Tunnel Circuit” competition
days using the Aerial Scout flying robot, as well as b) the exploration of a particularly narrow section of the
Edgar Underground Mine using the ANYmal legged robot. In all these tests it is important to note that
a) there is a single human operator of all the robotic team, and b) initially the robots have to align their



Figure 16: Autonomous exploration mission inside the Gonzen mine in Switzerland. The experiment demon-
strates the full use of both local and global planner modes from the proposed planning solution. Utilizing
both an occupancy map and a traversability map, the local planner recursively provides safe paths for ANY-
mal to explore the environment. In the presented sub-figures 1–3, both maps are colorized by the z-value
or the height of each voxel. In the event of detecting untraversable zones along the exploration path, the
robot is first commanded to backtrack a short distance (0.5m), the untraversable area is marked as a “no-go”
zone and the local planner is then re-triggered to provide an alternative trajectory. Once the robot reaches
a dead-end, the global planner is employed to relocate the robot towards another potential frontier. The
homing procedure is eventually engaged when the remaining time approaches its maximum budget. The
approximate exploration path in this mission was 300m long. A video of this mission can be found at
https://youtu.be/W9lgdmDg6UM.

coordinate frame with a DARPA reference frame defined, among other options, through three AprilTags
set-up by DARPA. The latter serves to allow scoring and assessing map quality by DARPA.

6.5.1 ANYmal Robot at the DARPA STIX Integration Exercise

The DARPA SubTerranean Integration eXercise (STIX) took place at the Edgar underground research mine
in Colorado. This mine is an abandoned long-wall mine that used to produce silver, gold, lead and copper.
As part of this pre-competition activity robotic systems were deployed at two portals of the mine, namely
the “Army Portal” and “Miami Portal” and then proceeded to explore autonomously. Figure 18 presents
an autonomous exploration mission conducted by the ANYmal robot utilizing GBPlanner and deployed at
the Miami portal. The mission was subject to specific time constraints (60min for all the deployed robots)



Figure 17: Autonomous exploration inside the “Wampum Underground” facility which corresponds to an
abandoned room-and-pillar underground coal mine. Due to the room-and-pillar structure the environment
involves a very large set of intersections that have to be negotiated by the planner. In this experiment the
local planner is engaged continuously and only when the battery of the robot approaches its limits, the
global planning layer is automatically engaged to offer an auto-homing path. In the first subplot we present
the second planning step, the second subplot presents a case where the planner negotiates an intersection,
and the third presents the return-to-home path. A relevant video result accompanies this field deployment.
The approximate exploration path in this test was 180m long. A video of this experiment can be found at
https://youtu.be/cxfz8cqcuhA.

and no communication link was available other than that self-established by the robots. In this mission, the
planner guides the robot based on its local planning mode and finally commands a return-to-home path.
Being a test early in our development process, in this experiment Octomap is used for volumetric mapping.

6.5.2 Alpha Aerial Robot at the DARPA Subterranean Challenge “Tunnel Circuit”

The DARPA Subterranean Challenge Tunnel Circuit took place in the facilities of the National Institute for
Occupational Safety and Health (NIOSH) in Pittsburgh which involve an abandoned, now re-purposed for
research, room-and-pillar underground coal mine. Each participating team, and as part of this also our team
“CERBERUS”, had to deploy all its robots from outside the mine and only a single human-operator could
command the sequence with which robots enter the subterranean environment and which areas they should
explore. No communication link was also provided other than the one self-deployed by the robots. During
the 4-th scored run of our team we deployed the Alpha aerial robotic scout to explore the long entrance
corridor of the NIOSH underground mine. The single human-operator only provided approximate bounds
of the exploration space and the system autonomously entered the underground mine, explored as per the
limits of its battery life and automatically returned back to its starting position. The specific environment
is quite narrow (often less than 3m corridor width). The relevant result is depicted in Figure 19. As shown,
the robotic system started from outside the mine portal and proceeded to explore automatically. Initially
the robot had to detect the portal gate and align with a DARPA-provided coordinate frame defined by three
AprilTags, then pass the gate autonomously and subsequently engage GBPlanner to perform its mission.
The local planning mode was initially engaged and allowed the robot to explore this first part of the mine.
As the initial exploration bounds provided by the human operator were conservative with respect to the
robot exploration rate, the operator subsequently re-defined the bounds and the system explored up to the
end of this first straight mine tunnel section. Eventually, as the system endurance approached its limits the
planner automatically commanded a return-to-home path and the robot safely exited the mine and landed
in the competition “staging” area.



Figure 18: Autonomous exploration inside the Edgar mine in Colorado. This mission is a part of the system
integration exercise “STIX”, which was organized by DARPA to prepare for the first competition of the
SubT Challenge. After manually performing the initial alignment between the robot’s coordinate frame with
the DARPA reference frame and entering the mine, the local planner was engaged and utilized to navigate
the robot to explore the mine progressively. This mine is very long and narrow, while its terrain is uneven
and covered by a long rail-track which is a common feature inside old mines. The robot was forced to stop
inside the mine after one hour of total team deployment time as this is a hard time limit for any scored runs
in the DARPA SubT Challenge. The approximate exploration path in this mission was 200m long. A video
of this mission can be found at https://youtu.be/JFKeB8Q7B2s.

6.6 Exploration of an Underground Bunker

Subterranean settings can be extremely diverse with underground mines, caves, and urban subway infras-
tructure being only indicative examples. As part of our team preparation for the “Urban Circuit” of the
DARPA Subterranean Challenge we further evaluated the proposed planner inside an underground bunker
in Menznau, Switzerland. The Menznau bunker involves a network of narrow corridors and rooms offering
the evaluation of the planner ability to traverse constrained passages and efficiently explore wide spaces. In
this test both the Alpha flying robot and ANYmal were deployed and explored sections of this facility.

6.6.1 Aerial Robot inside the Menznau Underground Bunker

The exploration of the Menznau Bunker took place by combining the flying and legged robots. The “Alpha”
flying robot was commanded to initiate the mission and the system proceeded to take-off, pass the entrance
gate to the area to be explored and then GBPlanner was automatically engaged to enable efficient exploration.
The system proceeded with the local planner engaged exploring multiple bunker rooms and traversing several
narrow corridors. The system was simultaneously building its sparse global graph which at the end enabled
the commanding of an efficient and collision-free auto-homing path. The respective result is shown in
Figure 20 where the performance of the exploration process can be visually assessed. Of great importance
is the improvement of the return-to-home path - as opposed to a naive backtracking approach - since the
system optimized the path to the home destination and visibly reduced the distance to be traversed.

6.6.2 ANYmal Robot inside the Menznau Underground Bunker

The ANYmal robot was commanded to explore the same region to simultaneously evaluate a multi-robot
mapping functionality that our team was developing. As such, the order of procedures employed in this
experiment are analogous to the one before, namely a) initializing mission, b) calibrating against the external
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Figure 19: Autonomous exploration inside the NIOSH Underground Mine in Pittsburgh as part of the
DARPA Subterranean Challenge “Tunnel Circuit” competition activities. The single human operator of
all the CERBERUS robot team had designated the entrance corridor to be explored by the “Alpha” flying
robot by providing approximate bounds of the exploration space. The complete mission was fully autonomous
including a) take-off, b) alignment with DARPA frame (based on provided AprilTags), c) pass-through the
mine entrance gate, d) engaging the exploration planner in local planning mode, and finally e) automated
return-to-home. This environment is particularly narrow and thus the property of the planner to exploit
local graph search is key to its capacity to find solutions. The approximate exploration path in this mission
was 180m long. A video of this mission can be found at https://youtu.be/mw0qy05Fo6Q.

frame, c) passing the gate, d) enabling the graph-based exploration and guiding the robot through local
planning steps, and finally e) commanding a safe return-to-home path. The conducted mission, including
the exploration from both the flying and the legged robots was timed to fit within a 30min window. Figure 21
presents the relevant exploration mission by the ANYmal robot. As can be observed, especially due to the
narrow cross-section of ANYmal, the planner efficiently traverses very narrow settings and corridors.

6.7 Discussion

The presented results allow for a comprehensive evaluation of the performance of the proposed graph-based
exploration path planner in challenging and diverse subterranean environments. Each planning functionality,
including the local exploration, the global functionality to re-position the robot towards frontiers and enable
safe auto-homing, handling of collision-avoidance, respecting traversability constraints, negotiating multi-
way intersections and navigating narrow corridors was evaluated. GBPlanner demonstrated its capacity to
offer a unified high-performance solution applicable to different robots and in a large variety of underground
environments. To help facilitate further research in the domain, alongside this paper we release a) an open-
source implementation of the presented algorithm (ARL, 2020), as well as b) a large open dataset with
planning, localization and mapping, point cloud and when applicable camera data of all the abovementioned
experiments to allow research re-producibility and extension (ARL and RSL, 2019). Notably, across the
diverse field tests presented, the planner parameters were largely invariant. Apart from the different bounding
box reflecting different robot sizes and the size of the search volume of the local planner (set to smaller for
more narrow environments and larger otherwise) the rest of the parameters were identical across the tests.

As a further point it is worth briefly outlining some important challenges and limitations identified in the
process of these field experiments. First, in most of these underground environments, especially inside dry



Figure 20: Autonomous exploration inside an underground bunker in Switzerland using a flying robot.
This experiment presents the local exploration functionality of the planner in such an environment and
the auto-homing provided by the global planner. The system explores through both wide and constrained
environments, passes through multiple doors and traverses narrow corridors up to the point that the algorithm
identifies the need to command an auto-homing path due to the limits of the system’s battery life. The
approximate exploration path in this experiment was 180m long. A video of an experiment inside the
underground bunker is available at https://youtu.be/0HBfc9Fq0K0. The recording of the experiment in
the video stops before the return-to-home path is executed.

mines, the aerial robot created dense clouds of dust which challenged the onboard localization process and the
reconstructed volumetric map. Although, through a set of contributions our team has focused on enabling
resilient localization in such conditions (Khattak et al., 2020b). On the other hand, both the Octomap
and Voxblox volumetric mapping frameworks occasionally presented the error of populating free voxels as
occupied due to LiDAR measurements that stopped on the dust cloud, while in other cases LiDAR data had
gaps due to refraction. The first problem was addressed but at a slight penalty of needing more measurements
to map “thin” objects (e.g., a metal bar of small diameter). Simultaneously, as the robot explores areas
that contain cycles the incorporation of a loop-closure architecture, not extensively implemented in the
experiments presented above, is a key functionality. Broadly, further work in the direction of multi-modal
localization and mapping is needed for complete and resilient autonomy in subterranean environments.

An additional insight gained from our results relates to the importance of agile exploration given the size
of underground environments, often spanning several kilometers, and the limited endurance of small robotic
systems. The presented results do contain techniques to optimize this behavior, including planning the next
path before the robot completes its current reference, incorporation of the future reference in the model
predictive control loops but improvements on that front can be beneficial. Last but not least, we want to
highlight that for ground systems long-range traversability analysis can be key towards faster exploration as



Figure 21: Autonomous exploration inside an underground bunker in Switzerland. This experiment features
both local and global (-homing) functionalities of the proposed planner. Utilizing trajectories provided
by the local planner, the robot navigates safely through a previously unmapped underground bunker with
multiple doors, narrow passages, as well as relatively large rooms. The homing procedure is finally engaged
at time appropriate for the provided time budget constraint allocated for this mission. The approximate
exploration path in this mission was 200m long. A video of the complete experiment can be found at
https://youtu.be/r48WBG55_dY.

otherwise the onboard planner has to resort to either being efficient but occasionally unrealistically optimistic
(possibly planning towards non-traversable regions) or safe but conservative (planning only very short paths
ahead).

7 Conclusions and Future Work

This paper detailed a new graph-based exploration path planning strategy tailored to underground envi-
ronments and applicable to both walking and flying robot configurations. Through a bifurcated local- and
global-planning architecture the method is efficient and presents high performance in subterranean envi-
ronments that are at the same time large-scale, narrow, and contain multiple branches. The local stage of
the planner facilitates efficient exploration, while also allowing to identify paths that traverse very narrow
corridors and respect applicable traversability constraints. As the robot explores on its own it incrementally
builds a sparse global graph which in turn is used to re-position itself towards frontiers of the exploration
space or to provide a safe return-to-home path. The planner is evaluated first in a collection of simulation
studies and compared with other methods of the state-of-the-art. Subsequently, a wide collection of field ex-
periments is presented involving different types of environment geometries and thus allowing comprehensive
evaluation. Overall, the method presented high performance against diverse environments and robots and
was field-proven with respect to its resilience.



Future research will focus on addressing further hard problems in subterranean exploration. First, this relates
to multi-storey exploration in environments with staircases, vertical stopes and other mobility challenges
connecting different levels of the environment. Second, we will strive to augment our exploration autonomy
solution to exploit multi-robot teams intelligently. Currently, GBPlanner was fielded as part of multi-robot
deployments in the DARPA SubT Challenge Tunnel and Urban Circuit but fundamentally every robot was
operating on its own given an allocation of a bounded volume of interest (with the map within being initially
unknown). Our research will seek to implement efficient map sharing and multi-robot exploration behaviors
using GBPlanner as the autonomy kernel of this approach.
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