
1

The debut of AEOLUS,
the Autonomous model Sailboat of ETH Zurich

Marco Tranzatto1, Alex Liniger2, Sergio Grammatico2, Alberto Landi1

Abstract—Autonomous sailboats are good candidates for long
term oceanic surveys, since they use wind power as their main
mean of propulsion. Controlling a sail boat, however, is typically
not an easy task due to the high variability in the wind and the
side drift of the boat. In this paper, we describe how we design and
set up the control architecture of the boat, and control strategies
to sail upwind and execute fast and smooth tack maneuvers with
a real model sailboat. Different controllers to actuate the rudder
have been implemented and tested for both the upwind sailing
and the tack maneuver. Here we present experimental results
obtained during several tests at the lake Zurich.

Keywords—autonomous marine vehicle, autonomous model sail-
boat, upwind sailing, tack maneuver, embedded control.

I. INTRODUCTION

Since a sailboat cannot move along every direction at every
time, the wind direction must be taken into account to plan
an achievable navigation course. In fact, there is a certain
direction relative to the wind where a sailboat cannot navigate
at all, which is indeed called “no-sail zone”.

In this paper, we consider two main tasks for autonomous
model sailboats: sailing with a fixed heading and executing a
fast and smooth tack maneuver. The fixed heading can be either
a constant compass course or a fixed heading with respect to
the measured wind. The tack maneuver is a typical sailing
action which allows the boat to turn its bow into the wind
through the “no-sail zone”, so that the direction from which
the wind blows changes from one side to the other. To make the
model sailboat sailing, we can hence combine three possible
actions: sail on starboard haul, sail on port haul and tack.
Sailing on starboard (port) haul means that as a result of the
course of the sail boat, the wind blows from the starboard
(port) part of the vessel.

Many research groups have been developing model sailboats
in recent years, for instance the UBC team from the University
of British Columbia [1], the TRST team from the Tufts
University [2], the OLIN robotic sailing team [3], and the
FAST sailing boat team from the University of Porto [4].
Most studies on sailing boats focus on decoupling the control
system of the rudder from the one of the sails. Among others,
[5] explains how to identify a linear second order model for
the steering dynamics of a model sailboat, and to design a
PI (proportional-integral) feedback law to control the rudder.
Therein, the PI controller is used only to track a desired course

The authors are with the: 1Department of Information Engineering,
University of Pisa, Italy; 2Automatic Control Laboratory, ETH Zurich,
Switzerland. E-mail addresses: marco.tranzatto@gmail.com,
{liniger, grammatico}@control.ee.ethz.ch,
alberto.landi@dsea.unipi.it.

Fig. 1. Aeolus sailing at the lake Zurich.

angle while sailing, while another controller is in charge to
regulate the sails. Since a mathematical model of the dynamics
of a model sailboat is typically not easy to derive, some works
use fuzzy logic (namely, empirical rule-based logic) to control
both the rudder and the sails. The main idea is to exploit
the knowledge of the “helmsman”, which can be expressed in
terms of a rule-based control system [6]–[8]. In this paper, we
describe the autonomous model sailboat under development
in the Automatic Control Laboratory at ETH Zurich, called
Aeolus, depicted in Figure 1. The paper is divided in four
main sections: hardware and software setup, modeling, course
navigation and tacking. The first section briefly explains the
hardware and embedded software setup of Aeolus. The second
presents a simple yet useful method to identify a linear model
of the yaw dynamics, that will be used to tune the controllers
for the rudder. The third section shows two different controllers
used to track a desired heading while sailing upwind. The last
section analyzes three different approaches to execute the tack
maneuver; experimental results from several tests at the lake
Zurich are also presented.

II. AEOLUS SETUP

We started with an international one-meter RC model sail-
boat, and installed specialized electronics.

Our hardware is mainly composed by an autopilot control
unit and a weather station. Since sensing the wind is clearly
fundamental for a sailboat, we use a dedicated device for this
objective. The weather station we employ is the AIRMAR WS-
200WX [9], which we have mounted above the bow. The main
information it provides, allowing the boat to sail, is the appar-
ent wind (direction and speed), estimated true wind (direction
and speed) and GPS position. All these values are sampled
every 200 ms. Our autopilot is the PIXHAWK board [10],



2

Low Level
Controller AeolusHigh Level

Controller

EKF

[α?, tack] [δ, µ]

x
x̂x̂

Fig. 2. Software architecture.

an independent, open-source, open-hardware microcontroller.
It integrates a flight management unit and an input/output
module in only one component, and is able to send and receive
data over a radio transmission link. The PIXHAWK board
provides a POSIX-compatible real time operating system,
where many applications can run in parallel. Its input/output
model is equipped with many sensors, such as IMUs (Inertial
Measurement Units): accelerometer, gyroscope, magnetometer.
The main software architecture is shown in Figure 2. To
estimate the state of Aeolus (position, velocity, attitude, etc)
we rely on an indirect extended Kalman filter (EKF) readily
available in the PIXHAWK firmware. It has a loosely coupled
compensation to integrate inertial measurements from IMUs
and GPS positions, as explained in [11]. This filter uses a gen-
eral kinematic model, so no specific tuning based parameters of
Aeolus are required. We have structured the onboard software
in a hierarchical way: a high level application sends commands
and reference actions to a low level controller, which, reading
the information from the sensors, computes the input actions
(sail and rudder angles) to follow the desired reference. In this
way, the software structure emulates the typical task division
between navigator/tactician and helmsman on real sailboats.
Additionally, we decouple the control of the ruder and the
sail, similar as done in [5], [8].

III. MODELING AND IDENTIFICATION

In order to tune and analyze the closed-loop behavior
induced by the controllers as explained in the next sections,
a dynamical model of the sailboat is required. In [12] it
is shown how to derive a nonlinear four-degree-of-freedom
(4-DOF) dynamic model for a sailing yacht, including the
roll dynamics, using the notation introduced by [13]. This
procedure can in principle be applied to our model sailboat,
but then the modeling phase must be followed by a parameter
identification phase. Since identifying all the parameters of
the nonlinear model is typically challenging, we decided to
identify only the yaw and yaw rate dynamics of our sailboat
using a linear model, as suggested in [5], [14]. In [5] a
continuous-time transfer function, from the rudder angle to the
yaw rate output, is identified, which mathematically describes
the input/output behavior of the system, in this is the behavior
from the rudder input to the yaw rate. Once this model has
been identified, a pole is added at the origin, so that a transfer
function from the rudder to the yaw angle is also directly
obtained. In [14] a discrete-time trasfer function, again for
the yaw rate dynamics relative to the rudder angle input, is
identified instead. Starting from these two works, we next

describe a possible identification phase that can be executed
by a “helmsman”, using the remote controller to command the
model sailboat. The boat sails upwind with a constant velocity,
with the rudder being in the middle position; when the vessel
has enough longitudinal speed, a step command on the rudder
is given, that is, a strong steering input. This step command
produces a fast variation in the yaw rate and in the yaw angle
of the boat, that are recorded and transmitted via the radio link
to a PC located on the shore.

Using the data from the above identification phase, we
identify a state space description of the yaw and yaw rate
dynamics. Specifically, we define the state vector at time k as

xk = [ωk, ψk]
> (1)

where ω is the yaw rate and ψ is the yaw, or heading, angle.
We assume that the system dynamics can be described by the
discrete-time linear system

xk+1 = Axk +Bδk (2)

Where xk is the state of the boat and δ is the rudder command.
A similar state space description has been shown in [15], where
the unknown parameters are adaptively estimated. We use a
slightly different approach, and estimate each parameter of
the model without an adaptive procedure. The two-state-space
model (2), whose matrices are

A =

[
a11 a12
a21 a22

]
, B =

[
b1
b2

]
(3)

We identify two slightly different types of models: the grey and
the black type models. In the grey type we use the knowledge
about the physical meaning of the two variables in the state
vector. We assume that the yaw rate ω (at time k+1) depends
only on the previous yaw rate (at time k) and on the rudder
command, thus in (3) we impose a12 = 0. Then, we assume
that the yaw angle ψ (at time k+ 1) is the integral of the yaw
rate and it is not directly affected by the rudder command.
Therefore, in (3) we impose a21 = ∆t (time interval between
the time instants k and k+1), a22 = 1 and b2 = 0. In this way,
we are implicitly using the forward Euler method to integrate
the yaw rate signal. It then follows that in the grey model we
have to identify only the parameters a11 and b1. In the black
type model we do not make any prior assumption, thus we
identify the full matrices A and B in (3).

By collecting the yaw rate, the yaw and the rudder signals
experimentally, we follow a least square error procedure to
compute the matrices A and B. Numerically, the following
black type model has been derived:

A =

[
0.7078 −0.0124
0.0744 0.9986

]
, B =

[
−0.3089
−0.0228

]
, (4)

where the yaw rate and the yaw angle variables are meant
in radians. We have validated the model in (4) using data
collected in different navigation tests at the lake Zurich, and
one example of validation in Figure 3. It is important to point
out that typically there are different wind and sea (wave)
conditions between the day when a model is identified and
the days when it is validated. We notice that despite the fit



3

0 2 4
−50

0

50

100

150

Time [s]

[d
eg

]

ψ

ψ: 88.2% fit

0 2 4
−20

0

20

40

Time [s]

[d
eg

/s
]

ω

ω: 57% fit

Fig. 3. Output cross validation: The solid line is the real measurement; the
dashed line is the output predicted by the model.

ψ

χ

Fig. 4. Representation of the
heading angle ψ (where the bow
is pointing to) and the course-over-
ground angle χ (where the boat is
going to). v is the velocity vector
of the vessel.

ψ

σ

α

Fig. 5. Illustration of the angle
α: ψ is the heading of the boat
and σ defines the direction of the
true wind.

percentage for the yaw rate is not very high (57%), we achieve
a quite good fit for the yaw response (88.2%).

IV. COLLECTING AND FILTERING DATA

The main information used to sail are provided by the ex-
tended Kalman filter and by the weather station. The extended
Kalman filter supplies the heading angle, that is, the compass
direction where the bow is pointing to. The weather station
supplies the apparent and estimated true wind (direction and
speed), as well as the GPS position (latitude, longitude and
altitude) and the GPS course over ground. The course over
ground is the direction over the ground the vehicle is currently
moving in; it can be different from the heading, if there is drift
(caused by either the wind or the waves), see Figure 4. We
refer to the heading angle as ψ, to the estimated true-wind-
direction angle as σ and to the course-over-ground angle as χ,
see Figures 4, 5.

A. Filtering the row data
In order not to follow too much high-frequency wind shifts,

we design two moving average filters for the raw measure-
ments of the direction and speed of the estimated true wind.
The wind direction takes values between −180◦ and 180◦,
where 0◦ is the geographic North, +90◦ is the East, etc.
Note that the wind direction discontinuity at the beginning/end
of the scale requires special processing to compute a valid
mean value. We employ the single-pass procedure developed
by Mitsuta in [16] to compute a mean wind direction. Figure
6 shows the effect of these filters on the raw wind direction
measurement.

0 2 4 6 8
−200

−100

0

100

200

Time [s]

[d
eg

]

raw

avg

0 5 10 15

140

150

160

170

Time [s]

[d
eg

]

raw avg

Fig. 6. True wind direction from the weather station (blue) and averaged
value from the filter (orange). On the left an example of the delay introduced
by the moving average filter. On the right the mean value of the wind direction
when the raw measurement switches between −180◦ and 180◦, obtained by
using the Mitsuta mean.

B. Filtering the relative heading
We now consider the heading angle α with respect to the

wind direction, which reads as

α = ψ − σ, (5)

as illustrated in Figure 5. Setting a reference value α? for
this angle, the high-level controller tells Aeolus the desired
orientation relative to the wind. For example, if α? = 45◦

Aeolus should sail upwind (that is, between “close hauled”
and “beam reach”), if α? = 90◦ Aeolus should sail at beam
reach, etc. The sign of α? determines the haul: a positive
value corresponds to starboard haul (the wind is blowing
from the right side of the vessel), meanwhile a negative value
corresponds to port haul (the wind is blowing from the left
side of the vessel).

In order to overcome drift due to currents and waves, it is
possible to use the course over ground value χ, provided by
the GPS signal, instead of the heading ψ. Unfortunately, the
GPS signal sometimes drops, even for long periods of time,
up to 10 seconds. Therefore, here we define two angles to
take into account both the drift compensation and the updated
measurements:

αψ = ψ − σ (6)
αχ = χ− σ. (7)

Our estimated α angle is computed as a convex combination
between these two angles as follows:

α = (1− λ)αχ + λαψ (8)

where λ is a function of the last time when the course-over-
ground signal has been updated, that takes values in [0, 1].
Specifically, the more time has elapsed without a course-over-
ground update, the more λ tends to 1; when a new course over
ground is received, λ is then reset to 0. Since this design can
cause discontinuities in the α estimate when a new course over
ground is received, we employ a moving average filter on the
α value to smooth out the actual estimate.

V. TRACKING A CONSTANT HEADING

A low level regulator is in charge of controlling both the
sails and the rudder. The reference heading angle for the low



4

regulator is α?, and is set by the high-level controller. Using
the equation (5), we can specify either a constant compass
course or a constant heading to the wind as reference. The
first case is simply obtained by setting σ = 0; the second case
uses a more general formulation where σ is provided by the
weather station.

Here we design two rudder controllers: a standard propor-
tional (P) controller and a more sophisticated nonlinear one
(NL). Let use normalize the rudder command δ to be in the
range [−1, 1]. Given the reference angle α? and the current
estimate α, the heading error reads as e := α? − α, and the P
rudder controller sets the rudder command δ as

δ = δP(e) = kp e,

for some kp > 0.
Instead, the NL controller defines a nonlinear gain k(e) as

k(e) =
kp

1 + cp|e|
(9)

for some kp, cp > 0, and hence sets the rudder command to

δ = δNL(e) = k(e) e.

The main idea of this nonlinear controller comes from [17].
The controller (9) acts as a proportional gain when the error
e is small, but its behavior changes when the error is large.
The cp constant can be in fact used to tune the control action
when the error is large; here we tune (9) so that the larger cp
is, the smaller the gain k(e) and so the rudder action. This
behavior is used also in the next section to execute a special
tack maneuver.

These two controllers are able to track a reference angle.
Using the identified numeric model in (4), we can study the
stability of the closed-loop system, both in the linear and the
nonlinear case. After several experimental tests, we can tune kp
for both stability and tracking purposes to the value kp = 0.35.
Based on the results from the P controller, we can tune the NL
one in (9) with kp = 0.35, cp = 0.35.

As for the sail control, we use a simple rule-based law: the
more Aeolus is sailing opposite to the wind direction, that is,
the smaller α is, the more we close the sails.

VI. TACKING MANEUVERS

When sailing upwind, a tack maneuver allows the boat to
change haul without getting stuck against the wind. Since
during the maneuver the boat crosses the no-sail zone, it should
be executed in the fastest and smoothest possible way, in order
not to get stuck against the wind. Three possible ways of
carrying out a tack are here developed and tested: the implicit,
the dedicated, and the optimal one. The last two maneuvers
require a switch from the rudder controller used during upwind
sailing to the controller developed for the tack maneuver.

A. Implicit tack maneuver
The implicit tack is done if the high-level controller simply

changes the reference α? of the low level heading controller,
without sending a “tack-now” command. We have noticed that

the implicit tack done using the P controller produces larger
overshoot, compared to the NL implicit one. Two main reasons
cause undesired overshoots: a strong initial rudder command
and the delay introduced by the average filters. When the
reference is changed, for example from −45◦ to 45◦, the P
controller sets a more aggressive rudder command, compared
to the NL controller, in which the cp coefficient is actually
tuned to be less aggressive when the error is large. Moreover,
the moving average filters used to filter the raw measurements
introduce a delay of about 2 s, thus if the tack maneuver is
executed too fast, for example by using an aggressive rudder
command, the delay introduced by the average filters induces
an overshoot in the heading angle response. To avoid this
overshoot, a less aggressive implicit tack maneuver should be
executed. Summarizing, our NL controller can both control
the rudder to sail upwind at constant reference and execute a
smooth tack maneuver without significant overshoot.

B. Dedicated tack maneuvers

On the other hand, the dedicated and the optimal tack
maneuvers are executed by the low-level controller when the
high-level layer sends the tack-now command and updates α?.
Therefore, the low-level application is now aware that a tack
must be carried out, and can hence perform special actions for
the maneuver. From our field experience, we mention three
critical actions to be taken into account when tacking. First, the
window size of two average filters (on the wind direction σ and
on the α angle) is set to 1 sample only; second, the α angle is
computed using only αψ in (6), not by using αχ in (8); third, a
specialized tack regulator (either the dedicated or the optimal)
takes control of the rudder during the maneuver. The first
action overcomes the undesired delay typical of the implicit
tack caused by the filters. The second action is needed because
during a fast tack maneuver, it is likely to loose the updated
course-over-ground measurement. In our implementation, a
specialized tack regulator (either the dedicated or the optimal)
controls the rudder until the tack is considered completed, that
is until the error signal is within specified bounds for about
1 s. Namely, we then switch back to the course-navigation
controller when the actual heading is close enough to the new
reference.

Let us now discuss in detail our dedicated and optimal tack
controllers. The dedicated controller is just the nonlinear one
in (9), with kp = 0.7366 and cp = 0.1 tuned to obtain a
more aggressive behavior and execute a faster, as well as
smooth, tack. With our numerical choice, when the error is
|e| = 90◦ we have |δ| = 1, thus the rudder is working at its
saturation boundary. Figure 7 shows a comparison between the
implicit and the dedicated tack controllers, during a tack from
port to starboard haul. We point out that this more aggressive
regulator does not produce overshoot thanks to the special
actions explained above.

Linear quadratic optimal tack controller

By optimal tack controller we mean a Linear Quadratic
Regulator (LQR), where “optimality” is with respect to an



5

0 2 4 6 8
−1

−0.5

0

0.5

1

Time [s]

[c
m

d]

δi δd

0 2 4 6 8

−50

0

50

Time [s]

[d
eg

]

αi αd

Fig. 7. Lake test: Comparison between implicit and dedicated tacks from
port to starboard haul. The upper plot shows the reference α? (heading with
respect to the wind direction) in dashed black, the implicit (solid blue) and
the dedicated (solid orange) tack responses. The lower plot shows the rudder
limits (dotted red), the implicit (solid blue) and the dedicated (solid orange)
rudder commands. The implicit tack takes ∼7 s, while the dedicated one takes
∼3.7 s only.

infinite-horizon cost function. The LQR is a state-feedback
controller, meaning that the control action is a static feedback
law of the state x as follows: δ = δ(x) = KLQRx.

To exploit the model derived in the modeling section,
we make the assumption that the true wind direction does
not change during the tack maneuver, which is a practically
reasonable assumption if the maneuver is fast enough. In this
way, a tack maneuver can be just seen as a change in the
heading angle ψ. For example, a tack from port (α? = −45◦)
to starboard haul (α? = 45◦), can been seen in two equivalent
ways: (a) we require a change in the α angle of ∆α = 90◦; (b)
we require a change in the heading angle ψ of ∆ψ = 90◦, i.e.,
∆ψ = ∆α, based on (5) assuming a constant wind-direction
angle σ. Thus, tacking results in steering the state of the system
in (1) from the initial value xi = [ωi,∆ψ]

> to the final value
xf = 0, where the latter consists in achieving the desired α?

with zero yaw rate.
Let us rewrite the model in (1) in state-space form with

δ̂k := δk − δk+1 (10)

x̂k := [ωk, ψk, δk−1]
>
, (11)

where δ̂ is the new control input and x̂ ∈ R3 is the extended
state. Namely, the extended state at time k, x̂k, contains the
yaw rate and yaw angle at time k and the rudder command
δk−1 injected into the system at the previous step k − 1. The
input δ̂ is the difference between the actual rudder command
at time k, and the previous one; in other words, the real rudder
command δ provided at the time k is then δk = δk−1 + δ̂k.

The state space matrices Â, B̂ corresponding to the extended
state dynamics become

Â :=

[
A B
0 I

]
, B̂ :=

[
B
I

]
. (12)

This state-vector extension allows us to define the following
cost function for the LQR strategy:

∞∑
k=0

‖x̂k‖2Q + rδ̂ 2
k , (13)

where the matrix Q � 0 and r > 0 are design choices. The
LQR gain KLQR is computed such that the state-feedback law
δ̂(x̂) = KLQRx̂ minimizes the cost function (13), subject to
the unconstrained discrete-time dynamics x̂k+1 = Âx̂k+ B̂δ̂k.
The main reason to extend the state vector as in (10) is to
assign a cost penalty to the control action δ as well as to the
control variation δ̂.

Once we obtaine the matrices of the extended model in
(12) using the values in (4), we can tune Q and r, both via
numerical simulations and via field tests. Let us hence choose
the numerical values

Q = diag(1, 3, 1), r = 35.

A comparison between the dedicated and the optimal tack is
depicted in Figure 8. The optimal controller is able to complete
the tack maneuver about 0.5 s faster than the dedicated one.
Although in the first phase (1 to 2 s) the rudder command
from the dedicated controller was more aggressive, the rudder
command from the LQR stayed longer close to the saturation
than the dedicated controller in the second phase (2 to 5 s).
This difference allows the optimal regulator to execute a faster
maneuver, without overshoot. The path of Aeolus during an
optimal tack maneuver is depicted in Figure 9.

VII. CONCLUSION

We have presented the hardware and software setups of
Aeolus, the autonomous model sailboat of ETH Zurich. We
have proposed a simple technique to identify a linear state
space model of the yaw dynamics relative to rudder commands.
We have designed two controllers for tracking a fixed heading
angle. Furthermore, we have designed three controllers to
execute a tack maneuver. All control laws have been imple-
mented and validated on Aeolus in several autonomous sailing
tests at the Zurich lake. We have achieved experimentally fast
and smooth tack maneuvers, mainly by employing special
actions in filtering state measurements and computing the
rudder commands. We believe that our setups, design choices
and experimental evidence provide useful insights for further
research in the field of autonomous sailing.

ACKNOWLEDGMENT

The authors would like to thank Jonas Wirz, Marcello
Colombino and Dr. Henrik Hesse for their support on related
project work, Prof. Roy Smith and Prof. John Lygeros for
their project supervision. The authors acknowledge the KIM
research grant 2013/‘14 from ETH Zurich.



6

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Time [s]

[c
m

d]

δo δd

0 1 2 3 4 5 6

−50

0

50

Time [s]

[d
eg

]

αo αd

Fig. 8. Lake test: comparison between optimal and dedicated tacks from port
to starboard haul. The upper plot shows the reference α?, the heading with
respect to the wind direction (dashed black), the optimal (solid orange) and
the dedicated (solid blue) tack responses. The lower plot shows the rudder
limits (dotted red), the optimal (solid orange) and the dedicated (solid blue)
rudder commands. The optimal tack takes ∼3.2 s, while the dedicated one
takes ∼3.7 s.

−15 −10 −5 0

0

5

10

East [m]

N
or

th
[m

]

position

Fig. 9. Path of Aeolus (the GPS receiver is located above the bow) while
executing an optimal tack. Starting from the origin position, Aeolus sails
upwind at port haul. A tack is executed at (−9,10), and then Aeolus sails
upwind at starboard haul. The black arrows show the mean wind direction
measured by the weather station.

REFERENCES

[1] UBC SAILBOT. (2014) Website: http://ubcsailbot.org/. Uni-
versity of British Columbia.

[2] TRST. (2014) Website: http://sites.tufts.edu/roboticboat/.
Tufts University.

[3] OLIN ROBOTIC SAILING TEAM. (2014) Website:
http://olinroboticsailing.com/. Franklin W. Olin College
of Engineering.

[4] FAST. (2014) Website: www.fe.up.pt/fast/. Faculdade de En-
genharia da Universidade do Porto.

[5] N. A. Cruz and J. C. Alves, “Auto-heading controller for an autonomous
sailboat,” in OCEANS 2010 IEEE-Sydney. IEEE, 2010, pp. 1–6.

[6] E. C. Yeh and J.-C. Bin, “Fuzzy control for self-steering of a sailboat,”
in Intelligent Control and Instrumentation, 1992. SICICI’92. Proceed-
ings., Singapore International Conference on, vol. 2. IEEE, 1992, pp.
1339–1344.

[7] J. Abril, J. Salom, and O. Calvo, “Fuzzy control of a sailboat,”
International Journal of Approximate Reasoning, vol. 16, no. 3, pp.
359–375, 1997.

[8] R. Stelzer, T. Proll, and R. I. John, “Fuzzy logic control system for
autonomous sailboats,” in Fuzzy Systems Conference, 2007. FUZZ-IEEE
2007. IEEE International. IEEE, 2007, pp. 1–6.

[9] AIRMAR. (2014) Website: http://www.airmartechnology.com.
[10] PIXHAWK. (2014) Website: http://pixhawk.org/start/.
[11] D. H. Titterton and J. Weston, Strapdown Inertial Navigation Technol-

ogy, 2004, ch. 13.7.
[12] L. Xiao and J. Jouffroy, “Modeling and nonlinear heading control for

sailing yachts,” IEEE Journal of Oceanic Engineering, vol. 39, no. 2,
pp. 256–268, 2014.

[13] T. I. Fossen, Guidance and Control of Ocean Vehicles, 1994, ch. 2.
[14] T. Emami and R. J. Hartnett, “Discrete time robust stability design

of pid controllers autonomous sailing vessel application,” in American
Control Conference (ACC), 2014. IEEE, 2014, pp. 1993–1998.

[15] L. Xiao, T. I. Fossen, and J. Jouffroy, “Nonlinear robust heading control
for sailing yachts,” in IFAC Conference in Maneuvering and Control of
Marine Craft.

[16] Y. Mori, “Evaluation of several single-pass estimators of the mean and
the standard deviation of wind direction,” Journal of climate and applied
meteorology, vol. 25, no. 10, pp. 1387–1397, 1986.

[17] A. Balestrino, A. Landi, and L. Sani, “Cuk converter global control
via fuzzy logic and scaling factors,” Industry Applications, IEEE
Transactions on, vol. 38, no. 2, pp. 406–413, 2002.


